a2 United States Patent

De Angelis et al.

US009104756B2

US 9,104,756 B2
Aug. 11, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)
")
@
(22)

(65)

(30)

Dec. 23, 2011

(1)

(52)

(58)

CREATING HTML/CSS REPRESENTATIONS
OF A GEOMETRIC SYMBOL

Inventors: Rocco De Angelis, Schwalbach (DE);
Vittorio De Angelis,
Schwalbach-Hilzweiler (DE)

Assignee: SOFTWARE AG, Darmstadt (DE)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 804 days.

Appl. No.: 13/339,850

Filed: Dec. 29, 2011

Prior Publication Data

US 2013/0167001 A1l Jun. 27,2013
Foreign Application Priority Data
(EP) ot 11195595

Int. CI.
GOGF 17/00
GOGF 1730

GOGF 3/0481
GOGF 17/24
GOGF 17/21
GOGF 17/22

USS. CL

CPC ... GOGF 17/30861 (2013.01); GOGF 3/04817

(2013.01); GO6F 17/211 (2013.01); GO6F

17/218 (2013.01); GOGF 17/227 (2013.01);

GOGF 17/2247 (2013.01); GOGF 17/24

(2013.01); GO6F 17/248 (2013.01); GO6F

17/30805 (2013.01)

(2006.01)
(2006.01)
(2013.01)
(2006.01)
(2006.01)
(2006.01)

Field of Classification Search
CPC ..o GOG6F 17/2247; GO6F 17/248; GO6F
3/04817, GO6F 17/30805; GOG6F 17/211;
GOG6F 17/227, GOG6F 17/218; GOGF 17/247

1430

USPC 715/838, 234-235, 272, 800-815, 763
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,681,178 B1* 3/2010 Georgeetal. 717117
2002/0054076 Al 5/2002 Kim
2005/0160065 Al* 7/2005 Seeman 707/1
2005/0268216 Al* 12/2005 Hayes et al. ... 715/505
2006/0059461 Al* 3/2006 Bakeretal. . .. 717113
2008/0077854 Al* 3/2008 Alabiccooooovviiininnn. 715/236
2008/0126380 Al 5/2008 Lawe
2009/0063427 Al* 3/2009 Zutaetal. 707/3
2012/0030570 Al* 2/2012 Migos 715/702
2012/0079374 Al* 3/2012 Gaddis 715/269
2012/0079390 Al* 3/2012 Ballaghetal. 715/738

2012/0266061 Al* 715/234

OTHER PUBLICATIONS

10/2012 Williamson et al.

Search Report issued on Apr. 27, 2012 in corresponding European
Application No. 11195595.1.

Elizabeth Gonzalez, “CSS-AFFN: A Datasheet Representation
Model for Active Recognition Systems,” Computer Analysis of
Images and Patterns, Aug. 29, 2011, pp. 402-409.

* cited by examiner

Primary Examiner — Quoc A Tran
(74) Attorney, Agent, or Firm — Nixon & Vanderhye, P.C.

&7

The invention relates to the creation of a HTML/CSS repre-
sentation of a geometric symbol by processing (1000) a sym-
bol definition from a file and by creating a web browser
specific shape CSS class for each geometric shape (1080)
comprised in the symbol definition. The generated HTML/
CSS representation (1150) comprises the one or more created
web browser specific CSS classes (1080, 1130).

ABSTRACT

15 Claims, 17 Drawing Sheets

™~ 1480

Symbol
definition

Static
content

S~ 1490

Symbol
HTML

1400

1410

\
4
™\

1420

Symbol
HTML A

U.S. Patent Aug. 11, 2015 Sheet 1 of 17 US 9,104,756 B2

Fig. 1 (prior art)

S L
-
)
]

U.S. Patent Aug. 11, 2015 Sheet 2 of 17 US 9,104,756 B2

A Web Page

&> x 4 [http 7 [

Bitmap graphic based symbols

=] .o

Intermediate event
200

Bitmap graphic based symbols (scale factor 2)

E

) Intermediate event

220
Fig. 2 (prior art)
< > P
1 ~ 3
4 < Talsk 5 > 6
7 3 9

300

Fig. 3 (prior art)

U.S. Patent Aug. 11, 2015 Sheet 3 of 17 US 9,104,756 B2

A Web Page
<Gy x O [htpl &

HTML

@ HTML5 Canvas

1
1
1
i
! Task
i
1
]

Fig. 4 (prior art)

U.S. Patent Aug. 11, 2015 Sheet 4 of 17 US 9,104,756 B2

/

Fig. 5¢ Fig, 5d

U.S. Patent Aug. 11, 2015 Sheet 5 of 17 US 9,104,756 B2

Fig. 5e Fig. 5f

Fig. 5g Fig. 5h

U.S. Patent Aug. 11, 2015 Sheet 6 of 17 US 9,104,756 B2

Fig. 51

U.S. Patent

Aug. 11, 2015

Sheet 7 of 17

N [€
o

1020

1030

1040

1050

60

Fig. 6

Fig. 7

A\ 4

1100

111

o

—
—
|
o

—
—
N
o

—
—
(&
o

US 9,104,756 B2

U.S. Patent Aug. 11, 2015 Sheet 8 of 17 US 9,104,756 B2

height
height
base
(base-size) base-left base-right
Fig. 8a Fig. 8b
skew
height o height
base-left base base-right width
(base-size)

Fig. 9a Fig. 9b

US 9,104,756 B2

Sheet 9 of 17

Aug. 11, 2015

U.S. Patent

0L21

SS90 loquAg

0ccl

US 9,104,756 B2

Sheet 10 of 17

Aug. 11, 2015

U.S. Patent

09¢t

0GelL

TNLH
loquiAs

-

W)

SS90 |0qwAg

SSJ

00€l

IT "SI

orclL

uonluisp
[oqwiAsg

US 9,104,756 B2

Sheet 11 of 17

Aug. 11, 2015

U.S. Patent

SS9 loquiAg

08l —~+4~

SS9

1u81U09
Jljels

uoniuyep
|oqwAS

/ ocrl
0ovi

US 9,104,756 B2

Sheet 12 of 17

Aug. 11, 2015

U.S. Patent

v TNLH
loquiAg

SS0 |oquiAs

$82

€1 31

0961

;

SSO 10quiAs !

Y INLH ;

loquiAg —

]

]

- 589 _

\ TWLH !
0LS

llllllllllllllllllll

US 9,104,756 B2

Sheet 13 0of 17

Aug. 11, 2015

U.S. Patent

o

1

1

1

1

1

1

1

1

1

1

1

1

i

: »

1

i o

1 [o0]

i ©

1 -

1

1

1

i

1

1

1

1

1

1

1

1

1

1

. o

\\- =

) ©

i ~

1

1

i

1

1

1

1

1

i

1

1

1

1

i

i

1
A 4
o
o
N

(@]

(]

©

N \

[}
(9]
®|
©
o
@
©
©
o
=
©
©

US 9,104,756 B2

Sheet 14 of 17

Aug. 11, 2015

U.S. Patent

ls30 1oquiAg

vV IAN1H
|OQUIAS

Q1 'S1yg

[OQWAS

uopulap

\ ov8l

0081

uoniuLap
loquiAg

U.S. Patent Aug. 11, 2015 Sheet 16 of 17 US 9,104,756 B2

2500 \

2510 |

Fig. 19

U.S. Patent Aug. 11, 2015 Sheet 17 of 17 US 9,104,756 B2

SCESTTTSSITITNTNN
R R T TLN

2600 \

— 2620

\\i\\
N

AV Ay A4 AV AV AV4 VAV 4

Fig. 20

US 9,104,756 B2

1
CREATING HTML/CSS REPRESENTATIONS
OF A GEOMETRIC SYMBOL

This application claims priority to EP 11 195 595.1 filed 23
Dec. 2011, the entire contents of each of which are hereby
incorporated by reference.

TECHNICAL FIELD

The present invention relates to a method and system for
creating a HTML/CSS representation of a geometric symbol.

TECHNICAL BACKGROUND

Almost all modern enterprises use software tools for defin-
ing their internal and external processes. Such processes may
for example relate to the various steps necessary for the
assembly of a car but also to other tasks of an enterprise such
as monitoring sales. To be able to define, monitor and evaluate
acertain process or even the performance of the overall enter-
prise, a type of software referred to as Business Process
Management (BPM) Tool is commonly used. One example of
such a BPM Tool is the software ARIS available from appli-
cant.

However, before implementing and using such a process it
has to be defined. In order to simplify its definition, the
various steps of a process to be developed are typically dis-
played in graphical form, e.g., using a flow diagram as illus-
trated in the screenshot of FIG. 1. Such flow diagrams can be
created in various ways, e.g. manually or by drawing on a
computer using a professional drawing program. However,
such an approach is rather complex and inflexible. A more
convenient option of creating such a flow diagram is using a
web browser, e.g, by building a corresponding HTML file.

There are several ways to employ a web browser for cre-
ating flow diagrams which are briefly outlined in the follow-
ing:

A first option is to use a third party plug-in such as Adobe
Flash. However, such a plug-in typically requires a lot of
computing power and may not be available on all platforms.

Another option is using bitmap based graphics, wherein a
bitmap represents a symbol based on web graphic formats
like PNG or JPEG. Such a technology is used in products like
Signavio or BPMN Community. However, bitmap based for-
mats cannot be scaled without losing quality. This is illus-
trated in FIG. 2: Symbols 200 and 210 are bitmap graphic
based symbols which are displayed at original size. Symbols
220 and 230 show the same symbols, however scaled by a
factor of 2. As can be seen, the scaling results in visible
artifacts and thus in reduced quality.

Another approach is known as 9 slice scaling graphics.
This technology is for example used by IBM Blueworks Live.
The idea behind this approach is to split each graphic or
symbol into 9 slices, i.e., different graphics so that the various
region of the overall graphic can be independently scaled. As
shown in FIG. 3, the regions 1, 3, 7 and 9 will never be scaled
regardless of whether the graphic 300 will be stretched hori-
zontally or vertically. If the graphic 300 is horizontally scaled,
only the regions 2 and 8 will be stretched. If the graphic 300
is vertically scaled, the regions 4 and 6 will be stretched. The
region 5 will always be stretched. This approach has the
benefit that graphics that have a plain solid colored region in
the center can be scaled without losing quality. However, this
approach does not work with arbitrary shapes.

Another well-known approach is using vector based graph-
ics, wherein a graphic is formatted in a web browser sup-
ported format like SVG or VML. This is another technology

10

15

20

25

30

35

40

45

50

55

60

65

2

used by the BPM Tools of Signavio. Vector based graphics
can be indefinitely scaled without degrading quality. How-
ever, vector formats like SVG and VML need a high amount
of memory and a lot of processing power to render large and
complex SVG and VML structures.

A further option is to draw a symbol in the web browser by
using the HTMLS Canvas API (Application Programming
Interface). This technology is for example used by Lucidchart
or WebSphere Business Compass. Asillustrated in FIG. 4, the
HTMLS5 Canvas API allows to draw any kind of symbol 420
onto a canvas 410 in the web browser. Most common web
browsers today already support a GPU (Graphics Processor
Unit) acceleration for the HTMLS Canvas API but the per-
formance to calculate the symbol geometry and to draw a
symbol is still unsatisfactory.

A more recent approach is to use HTMLS and CSS3 (Cas-
cading Style Sheets), which is also a technology used by IBM
Blueworks Live. Following this approach, a symbol is repre-
sented by various nested HTML elements which are styled
with CSSs. This technique can be combined with any of the
other approaches described above, in particular the 9 slice
scaling graphics. Most common web browsers support a GPU
accelerated CSS rendering leading to an acceptable perfor-
mance of representing a symbol as a HTML fragment styled
with CSS compared to the other solutions. However, it is
rather difficult for human persons to create a complex symbol
based on a HTML fragment and to style it with CSS. In
addition, some common web browsers fail to support the
complete CSS standard so that different CSS notations are
necessary to obtain the same or similar results.

Itis therefore the technical problem underlying the present
invention to provide a solution that reduces the necessary
effort for programming such graphics, in particular in view of
the different web browsers, and to make such code more
reliable and stable.

SUMMARY OF THE INVENTION

In one embodiment this problem is solved by a method for
creating a HTML/CSS representation of a geometric symbol,
wherein the method comprises:

a. processing a symbol definition from a file;

b. creating a web browser specific shape CSS class for each
geometric shape comprised in the symbol definition; and

c. generating a HTML symbol comprising the one or more
created web browser specific CSS classes.

By using a definition of the geometric symbol written in a
format that is easier to understand than a convoluted combi-
nation of HTML/CSS the effort needed for creating such a
symbol can be greatly reduced. Writing code in an appropri-
ate language (e.g., XML or JSON) is easier than writing code
directly in a combination of HTML and CSS. This is particu-
larly the case if a certain geometric symbol has a complex
structure and comprises several shapes, such as a square with
several circles, wherein each circle has different line colors
and color gradients.

In one exemplary embodiment, the method further com-
prises the creation of at least one web browser specific
attribute CSS class for each of the geometric shapes.

Thereby geometric shapes may be separated by putting
them into different CSS classes. By creating not only a CSS
shape class, but also a CSS attribute class it is possible to
separate the shape and specific attributes of the geometric
symbol. Therefore, less code is needed, since equal geometric
shapes can use the same CSS code. Only the respective
attributes, e.g., color or size may be stored separately in the

US 9,104,756 B2

3

attribute CSS classes. The CSS files can then be combined to
build a common HTML/CSS representation of the geometric
symbol.

As already mentioned above, different web browsers sup-
port HTML and CSS in different ways so that the respective
HTML and CSS files must fulfill certain requirements
depending on the web browser. The invention allows building
of web browser specific CSS classes so as to optimize the
display of the symbols. However, a web browser specific class
may also be compatible to several (e.g., the most common)
web browsers. For instance, if two or more web browsers
support some CSS code in the same way, they may be grouped
to form a first web browser specific CSS class, while for other
web browsers a second CSS class is generated.

Preferably, the method comprises the additional step of
determining the level of CSS support of the web browser and
the step of adjusting the creation of the web browser specific
CSS classes accordingly.

As mentioned above, there is a wide variety of different
standards and versions of standards which makes the correct
display of information more complex. Moreover, different
web browsers typically interpret commands in a different way
which may also lead to different results. Thus, by determining
the level of CSS support of the web browser and consequently
by adjusting the creation of web browser specific CSS classes
accordingly, it is possible to tune the resulting HTML/CSS
representation such that it can be optimally processed and
displayed by the respective web browser. As mentioned
above, it may be the case that several web browsers support
certain CSS code in a similar way, which would result in web
browser specific classes suited for several web browsers.

It is preferred that the web browser specific shape CSS
class is created from a generic shape CSS class.

The creation of a generic shape CSS class can serve as basis
for the generation of various web browser specific shape CSS
classes. Thus, it is not necessary to re-create the basic infor-
mation required for creating the web browser specific shape
CSS classes but the existing generic shape CSS class can be
re-used. This feature further increases the efficiency of the
generation of the HTML/CSS representation.

It is also preferred that the step of creating the at least one
web browser specific attribute CSS class further comprises
the step of determining equal attributes for each of the shapes
and the step of merging the equal attributes into a generic
attribute CSS class.

This feature may even further reduce the amount of the
code. Even different geometric shapes (e.g., circle, triangle
and square) may share at least some attributes (e.g., color of
the lines or line width etc.). By grouping these attributes in a
single CSS class the code needs to be present only once and
may be called several times. Consequently, the amount of
code can be reduced compared to the standard solution which
does not teach such a determination and merging step.

Preferably, the web browser specific attribute CSS class is
created from the generic attribute CSS class.

This feature allows to start from the generic class and to
produce multiple different web browser specific classes with-
out the need to re-create the basic information necessary to
generate web browser specific attribute CSS classes. This
aspect is similar to the above discussed generation of web
browser specific shape CSS classes and has similar advan-
tages.

It is preferred that the step of generating the HTML/CSS
representation comprises the generation of the HTML/CSS
representations for a set of pre-defined web browsers and
storing the set of HTML/CSS representations into a single
file.

10

20

25

30

35

40

45

50

55

60

65

4

As mentioned before, different web browsers may interpret
code differently. This may lead to different visual represen-
tations of a symbol even though the same code is used. To
overcome such problems a set of web browsers may be pre-
defined in order to create a number of HTML/CSS represen-
tations at once. As a result, the web browser can select the
correct version of the HTML/CSS representation, e.g., based
on atag comprised in the file and therefore display the symbol
as originally intended by the creator of the symbol.

Preferably, the symbol definition is provided in a XML-
compatible format.

The XML standard serves as a basis for nearly all web
based standards, e.g., HTML or CSS. Thus, by using such
basic and well-known standard the creation of complex sym-
bols can be improved. Moreover, the XML is human readable
and easily understandable, in particular when compared to
complex programming languages. Consequently, symbols
defined in XML (or a similar language) can not only be easier
understood but also be quickly modified and even without any
knowledge of complex programming languages.

In a preferred embodiment, the HTML/CSS representation
comprises a HTML file which comprises the web browser
specific CSS classes.

It may be desired to pre-produce a symbol for a wide
variety of web browsers. In this case, one option is to build a
single HTML/CSS representation, e.g., a file, which com-
prises symbols according to the web browser specific classes.
The web browser could then determine which of a number of
symbols to use in order to correctly display the symbol. In
particular, the user may not have to determine which version
of'the file to use. This could be done by the web browser, e.g.,
based on a tag comprised in the code of the respective HTML/
CSS representations.

The invention may also be implemented by a computer
program comprising instructions for causing at least one
computer to perform a method according to any of the above
described embodiments.

The invention may also be realized by a system for creating
a HTML/CSS representation of a geometric symbol, wherein
the system comprises:

a. aprocessing module adapted to process a symbol definition
from a file;

b. a creation module adapted to create a web browser specific
shape CSS class for each geometric shape comprised in the
symbol definition; and

c. a generation module adapted to generate the HTML/CSS
representation comprising the one or more created web
browser specific CSS classes.

Further dependent claims are described in the detailed
description of the invention.

SHORT DESCRIPTION OF THE FIGURES

In the following detailed description, presently preferred
embodiments of the invention are further described with ref-
erence to the following figures, wherein the figures show:

FIG. 1: an example of a process flow model comprising
different symbols having different shapes and attributes
(prior art);

FIG. 2: the effect of scaling bitmap graphic based symbols
(prior art);

FIG. 3: the so-called 9 slice method for scaling symbols
(prior art);

FIG. 4: an example of web browser side rendering with
HTMLS canvas (prior art);

US 9,104,756 B2

5

FIG. 5a-i: examples of various shapes that could be defined
in CSS in accordance with an embodiment of the present
invention;

FIG. 6: an example of a complex symbol;

FIG. 7: a flow diagram illustrating the transformation of a
symbol (e.g., defined in XML) into a HTML/CSS represen-
tation in accordance with an embodiment of the present
invention;

FIG. 8a-b: example definitions of triangles in accordance
with an embodiment of the present invention;

FIG. 9a-b: example definitions of trapezia in accordance
with an embodiment of the present invention;

FIG. 10: the workflow for the transformation of a symbol
into a HTML/CSS representation in accordance with an
embodiment of the present invention;

FIG. 11: components of the transformation framework in
accordance with an embodiment of the present invention;

FIG. 12: an illustration of the transformation framework as
decoupled system in accordance with an embodiment of the
present invention;

FIG. 13: an illustration of the transformation framework
when integrated on server side in accordance with an embodi-
ment of the present invention;

FIG. 14: an illustration of the cross-browser support in
accordance with an embodiment of the present invention;

FIG. 15: an illustration of the transformation framework
when integrated on client side in accordance with an embodi-
ment of the present invention;

FIG. 16: an illustration of a complex symbol comprising
three triangles;

FIG. 17: an illustration of a rounded square with back-
ground color;

FIG. 18: an illustration of a complex figure comprising a
rounded square, a triangle and a circle, sharing the same color
gradient;

FIG.19: anexample of a simple symbol in accordance with
an embodiment of the present invention;

FIG. 20: an example of a tablet computer symbol in accor-
dance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE FIGURES

As already mentioned in the introduction, one of the main
disadvantages of the known HTML/CSS approach is the
complexity of a HTML fragment and the one or more CSS
styles. This is particularly problematic if these fragments and
styles are created manually. In any case, the code has to be
correct so that the created symbol will be correctly rendered
in the different web browsers. The idea of the present inven-
tion is to represent a graphical symbol as a HTML fragment
and to style it with CSS in a more efficient way than known
from prior art. This is achieved by creating the symbol in a
simpler, human understandable and generic language such as
XML, SVG or comparable languages and to transform it into
an HTML/CSS representation in an efficient manner. The
user does not need to have any knowledge about HTML and
CSS.

For reasons of simplicity, the description mostly refersto a
single symbol in a file that is to be processed. However, it is
clear that also any number of symbols could be comprised
within a single input file which is then generated into a
HTML/CSS representation. This allows to generate even
more complex HTML/CSS representations based on a single
input file which is written in human-readable language. Dif-
ferent symbols comprised in a single file could also make use
of the various features and embodiments described herein,
e.g., the merging of shapes and/or attributes.

10

15

20

25

30

35

40

45

50

55

60

65

6

With reference to FIGS. 5a to 5i several basic CSS based
geometric shapes are exemplarily shown. It is to be under-
stood that the following list of geometric shapes is by no
means intended to restrict the number of possible geometric
shapes. They are intended to provide an overview over some
common geometric shapes and CSS representations thereof.
The following CSS styles can be applied to a single <div>
element to obtain the corresponding shape.

FIG. 5a shows a circle which could be represented by the
following CSS code:

#circle {

width: 140px;

height: 140px;

background: red;
-moz-border-radius: 70px;
-webkit-border-radius: 70px;
border-radius: 70px;

}

Another basic geometric shape is a square as shown in FIG.
5b, and which could be represented by the following CSS
code:

#square {

width: 140px;
height: 140px;
background: blue;

A similar geometric shape is a rectangle. An example of a
rectangle is shown in FIG. 5¢. This shape could be repre-
sented by the following code:

#rectangle {
width: 140px;
height: 80px;
background: green;

A rounded square as shown in FIG. 54 is another basic
geometric shape that is typically used in flow diagrams. A
rounded square could be represented by the following code:

#rounded_square {

width: 100px;

height: 100px;
background-color:#344567;
-moz-border-radius:20px;
-webkit-border-radius: 20px;
border-radius: 20px;;

}

A parallelogram such as that exemplarily shown in FIG. 5¢
may be represented by the following code:

#parallelogram {

width: 130px;

height: 75px;

background: pink;

/* Skew */

-webkit-transform: skew(20deg);
-moz-transform: skew(20deg);
-o-transform: skew(20deg);
transform: skew(20deg);

US 9,104,756 B2

7

An oval is another shape regularly used in flow diagrams.
The shape could be represented by the following code:

#oval {

width: 200px;

height: 100px;

background: purple;
-moz-border-radius: 100px / 50px;
-webkit-border-radius: 100px / 50px;
border-radius: 100px / 50px;

}

Trapezia are also typically used in flow diagrams. An
example of a trapezium illustrated in FIG. 5g. It could be
represented by the following code:

#trapezium {

height: 0;

width: 80px;

border-bottom: 80px solid blue;
border-left: 40px solid transparent;
border-right: 40px solid transparent;

Another typical geometric shape is a diamond, shown in
FIG. 54. This diamond could be represented by the following
code:

#diamond {

width: 80px;

height: 80px;

background: purple;

margin: 3px 0 0 30px;
-webkit-transform: rotate(-45deg);
-moz-transform: rotate(-45deg);
-ms-transform: rotate(—45deg);
-o-transform: rotate(-45deg);
transform: rotate(-45deg);
-webkit-transform-origin: 0 100%;
-moz-transform-origin: 0 100%;
-ms-transform-origin: 0 100%;
-o-transform-origin: 0 100%;
transform-origin: 0 100%;

A further geometric shape is a triangle. FIG. 5/ illustrates
triangles with different orientation (up, down, left and right),
which could be represented by the following code:

#up-triangle {

width: 0;

height: 0;

border-bottom: 120px solid green;
border-left: 60px solid transparent;
border-right: 60px solid transparent;

#down-triangle {

width: 0;

height: 0;

border-top: 80px solid pink;
border-left: 60px solid transparent;
border-right: 60px solid transparent;

#left-triangle {

width: 0;

height: 0;

border-right: 100px solid orange;
border-top: 50px solid transparent;
border-bottom: 50px solid transparent;

}
#right-triangle {

10

15

20

30

35

40

50

55

60

65

8

-continued

width: 0;

height: 0;

border-left: 100px solid red;
border-top: 50px solid transparent;
border-bottom: 50px solid transparent;

}

All of the above explained basic geometric shapes can be
rotated, translated and may also be combined to form com-
plex symbols. Further, CSS supports shadows and transpar-
ency. In addition, it is also possible to fill the various geomet-
ric shapes with different color gradients as well as with
images. Generally, the invention may use all features that are
provided by CSS, even if they are not explicitly mentioned
herein. This makes it possible to create very complex sym-
bols.

While the above shapes are quite simple, FIG. 6 illustrates
an example for a complex symbol and the HTML/CSS code
necessary for creating that symbol. As can be seen, the
required code is quite complex and therefore error-prone. In
more detail, the example of FIG. 6 is composed of the fol-
lowing 3 shapes: A rounded rectangle which is the base shape
of the symbol, the triangle in the middle of the symbol and a
shape used to display the glass effect of the symbol. Writing
manually a CSS/HTML definition for the symbol will end up
in at least 3 <div> elements (one for each shape) and 3 more
complex CSS style definitions defining the appearance for
each shape (e.g., size, colors, shadows).

<htm!>

<head>

<title>>Test</title>

<style>

.ExampleSymbol {

padding:0px;

width: 176px;

height: 176px;

background: -webkit-gradient(linear, 0% 0%, 0% 100%,
from(#2DIDCD), to(#00B6F1), color-stop(.5 #004DE4));
display: inline-block;

color: #{1f;

text-decoration: none;

-moz-border-radius: 30px;
-webkit-border-radius: 30px;

-moz-box-shadow: 0 1px 3px rgba(0,0,0,0.6);
-webkit-box-shadow: 0 1px 3px rgba(0,0,0,0.6);
text-shadow: 0 —1px 1px rgba(0,0,0,0.25);
border-bottom: 1px solid rgba(0,0,0,0.25);
position: relative;

¥

.glossy {

background: -webkit-gradient(linear, 0% 0%, 0% 100%,
from(rgba(255, 255, 255, 0.8)), to(rgba(255, 255,
255,0.2)));

height: 90px;

width: 176px;

position: relative;
-webkit-border-top-right-radius: 38px;
-webkit-border-top-left-radius: 38px;
-webkit-border-bottom-right-radius: 120px 20px;
-webkit-border-bottom-left-radius: 100px 20px;
z-index: 3;

-webkit-box-shadow: inset Opx 2px 1px #{1T;
border-top-right-radius: 38px 38px;
border-top-left-radius: 38px 38px;
border-bottom-right-radius: 120px 20px;
border-bottom-left-radius: 100px 20px;

.right-triangle {

width: 0;

height: 0;

border-left: 60px solid white;

US 9,104,756 B2

9

-continued

border-top: 30px solid transparent;
border-bottom: 30px solid transparent;
position: relative;

left:65px;

top:55px;

¥

</style>

</head>

<body>

<div class=“ExampleSymbol”>
<div class="glossy”/>

<div class="right-triangle”/>
</div>

</body>

</html>

The invention provides a framework which allows a human
person or even a computer system to describe symbols such as
shown in FIG. 6 in a humanized language which, according to
an embodiment of the present invention, may then be trans-
formed by the transformation framework into a cross-browser
HTML 5/CSS 3 code. This results in the general ability of the
code to support all common web browsers.

In one embodiment, the present invention may be divided
in three parts, which will be described in more detail in the
following: the transformation framework, the definition lan-
guage and the symbol editor. However, this does not imply
that all parts are essential to realize the invention.

The transformation framework may be considered as core
of the invention. In one embodiment, the transformation
framework could be implemented as a piece of computer code
implementing the main logic and a language processor
adapted to transform a given humanized definition language
into a cross-browser HTML 5/CSS 3 code. However, other
versions of the standards may also be used.

A preferred embodiment of the transformation framework
will now be described with reference to FIG. 7. However, not
all of the following steps may be necessary in all embodi-
ments of the present invention.

In step 1000, the XML symbol definition is processed from
a file and then parsed into an in-memory data structure rep-
resenting the defined model. The in-memory data structure
may be a binary representation of the XML code. In step
1010, the symbol is broken down into its individual geometric
shapes. In step 1020, the geometric shapes used to form the
symbol are determined. As example, it may be determined
that the XML symbol comprises squares, triangles and
circles.

In step 1030, a HTML <div> element is created which will
represent the whole symbol. Further, for each shape a nested
<div> element is created. In HTML a <div> tag defines a
division or section in an HTML document. For the <div>
elements only the size and the position are defined directly in
the <div> element. All other styling information is assigned
using one or more CSS classes.

In step 1040, for each (different) geometric shape (e.g.
rectangle, triangle or circle) a generic CSS class is created and
assigned to the corresponding <div> element. If the symbol
definition comprises a certain geometric shape more than
once there is still only one CSS class created for this geomet-
ric shape. For example, if a XML symbol comprises two
squares, only one CSS class for squares will be created. This
class is also referred to as CSS shape class. This approach
reduces the amount of code of the generated CSS class. The
generic CSS class contains only CSS styles which can be
interpreted by all supported browsers. In general, the CSS
support of different web browsers is well documented so that

10

15

20

25

30

35

40

45

55

60

65

10

it is easy to create a kind of knowledge base for the frame-
work. This could be a XML document containing for each
supported web browser and one or more versions correspond-
ing to the CSS support, information on how to display the
different shape types and the supported effects in that web
browser.

In step 1050, the target platform (e.g., the specific web
browser type) for the symbol is determined. In step 1060, the
supported CSS level as well as the web browser specific CSS
support is determined.

In step 1070, a specific CSS generation engine is instanti-
ated to generate the web browser specific CSS code based on
the information determined in the previous step. As men-
tioned above, different web browsers may interpret com-
mands in a different way which could result in a different
display of the geometric shape or even in errors when dis-
playing the geometric shape. It is therefore desirable to adjust
the creation of the CSS shape classes to one or more specific
web browsers. In step 1080, a web browser specific shape
CSS class is generated for each geometric shape. Instep 1090,
the generated CSS classes are assigned to the corresponding
<div> elements.

In step 1100, the defined shape attributes are analyzed to
determine shapes with the same attribute type and value. In
step 1100, the frameworks merges as many as possible of the
attribute types/values into one CSS attribute class which can
be assigned later to several shapes. In other words, if several
shapes use at least in part the same attribute type with the
same value, this style information will be put in the same CSS
attribute class, step 1110. For instance, the transformation
framework could find two rectangles which both have the
same border color, the same border width and the same opac-
ity. In this case, this style information is put in one CSS
attribute class which is then assigned to the <div> elements of
both rectangles.

In step 1120 the CSS code is again broken down into two
parts: in a generic CSS code which can be interpreted by all
supported web browsers and in one part which depends on the
target web browser. In step 1130, the (target) web browser
specific CSS code for the shape attributes defining the style of
the geometric shape is created. In step 1140, the generated
shape CSS classes are assigned to the corresponding <div>
elements.

Finally, in step 1150, the generated HTML symbol code
(HTML and CSS) is written out as the final HTML/CSS
representation.

The definition language as it may be used herein in accor-
dance with an embodiment of the present invention may be
XML or DOM (Document Object Model) based. Other
implementations of the symbol language, e.g., based on
JSON are also possible. Such a description allows a human
person or system to describe in a humanized way a complex
figure or symbol. In this context, the term “humanized”
means that the language makes use of common, well known
and speaking terms to describe a complex figure or symbol.
The definition language may also allow to make use of com-
mon vector graphic languages which may be XML or text-
based. Such text-based-vector languages may be SVG, VML
or EPS. In a so-called mixed-mode, the definition document
may comprise embedded parts describing parts of the symbol
by one or more of those text-based vector languages. The
usage of those text-based vector languages is restricted by the
possibilities to describe shapes using the HTML/CSS defini-
tion language.

The following reference gives an overview of an example
definition language which is based on XML. It should be
mentioned that the below definitions are by no means

US 9,104,756 B2
11 12

intended to limit the invention to these definitions. It is also Triangle-Element:
possible to extend the language with new elements and
attributes as desired and required by the person skilled in the
art.

The triangle element extends the shape element with fol-
lowing attributes:

Symbol-Element:

<triangle

base-size := <size>

base-left := <size>

<symbol> base-right := <size>
card-style := [true | false]

Content: [<shape> | 

10

15

20

25

30

35

40

45

50

55

60

65

14
Attribute Type Definition:

size := < length > | <percent>

length:= integer px

percent := [0 .. 100] %

rotation := [-]? [0 .. 180]

color :=rgba (<red, green, blue, alpha>)

red = [0 .. 255]

green = [0 .. 255]

blue :=[0 .. 255]

alpha :=[0 .. 255]

shadows := (<shadow>) [, (<shadow>) 1*
shadow := <length> <color>

glow := <length> <color>

glossy := <color> <glossy-style>
glossy-style := [simple | rounded]

gradient := gradient(<gradient-start>, <gradient-
stop>, <gradient-start-color>, <gradient-stop-color>)
gradient-start-color := <color>
gradient-stop-color := <color>
gradient-start := start(< gradient-point>)
gradient-stop := stop(< gradient-point>)
gradient-point := [left | right | middle], [top |
bottom | middle]

Now the symbol editor will be described in more detail.
The symbol editor can be a GUI (Graphical User Interface)
which allows the user to draw complex symbols without any
knowledge about the symbol definition language. The symbol
editor will create as output a symbol definition (e.g., in XML-
compatible language) which can then be transformed into a
HTML/CSS figure by utilizing the transformation frame-
work. However, in one embodiment the symbol may also be
defined using any other suitable means, e.g., a text based
editor.

FIG. 10 illustrates the complete transformation workflow
in accordance with an embodiment of the present invention.
In step 1200 the user creates a symbol definition 1210. This
could be done using the symbol editor (e.g., the GUI men-
tioned above) or by creating the symbol definition manually,
e.g., using a text editor or a web browser or by using a third
party system. In the following, the symbol definition 1210 is
interpreted by the transformation framework 1220 (one
embodiment thereof has been described above with reference
to FIG. 7) and transformed in a programming object model. In
step 1230 the symbol definition is processed. Then, the trans-
formation framework 1220 creates optimized HTML and
CSS code, step 1240. In the last step 1250 the HTML code
1260 and CSS code 1270 are written out. The HTML/CSS
representation could be written into a single file or distributed
over several files. The steps performed by the transformation
framework 1220 can be executed automatically, or semi-
automatically. For instance, the user may interact with the
transformation framework 1220 in order to confirm the gen-
eration of the HTML/CSS representation for a specific
browser.

FIG. 11 is an overview about the different components of
the transformation framework 1300 according to a preferred
embodiment of the present invention and shows how these
components may interact with each other. The main compo-
nents of the transformation framework 1300 are the symbol
interpreter 1310 and the symbol generator 1320.

The symbol interpreter 1310 is responsible for parsing the
symbol definition 1330 and for creating an in-memory struc-
ture 1340 representing the symbol. As mentioned above, the
in-memory structure may be binary. The generated data struc-
ture 1340 is the input for the main transformation algorithm
which is implemented in the symbol generator 1320. The
symbol generator 1320 implements the algorithm to trans-
form a symbol from a human readable definition (e.g., XML)
into a HTML and CSS based representation. The symbol

US 9,104,756 B2

15
generator 1320 is also responsible for optimizing the CSS
structure 1350 and HTML structure 1360 and to make it cross
browser compliant.

According to another embodiment of the present invention,
the transformation framework is not part of the running sys-
tem making use of the output generated by the transformation
framework. The transformation framework is only used for a
one-time generation of the HTML symbol description. This
scenario is illustrated in FIG. 12 which shows the transfor-
mation framework as a decoupled system. Therein, an exter-
nal system 1400 uses the HTML/CSS representations 1410,
1420 of symbols which it retrieves, e.g., over a network. The
network may be any type of network known in the art. In
particular, it could be a wired network or a wireless network
or a combination thereof. The transformation of the symbol
definition occurs at a remote location and in accordance with
the embodiments described above. In more detail, the trans-
formation framework 1440 comprises the symbol interpreter
1450 and the symbol generator 1470. The symbol interpreter
1450 generates a symbol data structure 1460 based on symbol
definition 1430, which is then processed by symbol generator
1470 to produce a cross browser compatible HMTL/CSS
representation 1480, 1490. In this scenario, the already gen-
erated symbols (e.g., HTML and CSS files, which is the
output of the symbol generator) may be located on a web
server and are requested by a HT'TP request from the client.
The generator is not used during runtime.

In one embodiment, the code might run either on a server
(e.g., web/application server) or a client side (e.g., web
browser). In a client-server web scenario as illustrated in FIG.
13, the transformation framework 1500 is an integrated com-
ponent of the system. This means, the system makes use of the
transformation framework 1500 during the application runt-
ime. In this scenario the transformation framework 1500 can
be integrated either on the server 1510 or on the client (web
browser) side 1520. The figures below illustrate an embodi-
ment of this scenario. The client 1520 and server 1510 may
communicate via a network 1530 utilizing various types of
communication means. For instance, the client 1520 and
server 1510 may communicate via the World Wide Web,
wherein the client 1520 runs a web browser 1540 and com-
municates with the web server 1550 on the server side 1510
which provides the transformation framework 1500. In the
depicted embodiment, the web server 1550 which comprises
the transformation framework 1500 sends the HTML/CSS
representation 1560 via the network 1530 to the web browser
1540.

In this scenario it is also possible to use hard or soft per-
mutations (however, the hard and/or soft permutations could
also be used in any other embodiment of the present inven-
tion). In the hard permutations scenario the transformation
creates different HTML/CSS files for each supported web
browser. On runtime the web browser type is determined and
the corresponding symbol file is then sent to the client. In the
soft permutations scenario the transformation framework will
create only one HTML/CSS file, i.e., one HTML file and one
CSS file. which will work on each supported web browser.
However, it is also conceivable that only a single file may be
created. In the soft permutations case the generated file will
be much larger and needs much more time to be transferred to
the client. Ifhard permutations are used, the web browser type
and CSS support might be determined during runtime.

This is also illustrated by FIG. 14, wherein via a web
browser 1600 on the client side 1610 a HTML symbol is
requested 1640 from the server 1620. The request is retrieved
by transformation framework 1630 which then processes the
request. In step 1650, the transformation framework 1630
processes and analyzes the symbol definition. Subsequently,

35

40

45

50

16

the type of the requesting web browser and the CSS support
are determined, step 1660. To this end, the web browser may
use the HTTP protocol to request data like HTML pages or
CSS files from the server. The header of a HTTP request
message contains a field named “user agent™ (see http://tool-
s.detf.org/html/rfc1945#section-10.15) used by the commu-
nication partners to characterize the client and to optionally
select suitable content. Thereafter, the CSS configuration
engine can be configured, step 1670, which then generates
optimized HTML/CSS symbol code, step 1680. As a result,
the generated HTML/CSS code is written out, step 1690 and
finally the transformation framework 1630 may provide (di-
rectly or indirectly) the web browser 1600 with the request
response, step 1700, i.e., with the requested HTML/CSS rep-
resentation of the symbol.

However, according to a preferred embodiment of the
present invention it is also possible to perform the transfor-
mation on the client side, which is illustrated in FIG. 15.
Therein, a server 1800, e.g., a web server 1820 may send a
symbol definition 1830, e.g., via the World Wide Web 1840
(or any other suitable communications means known to the
person skilled in the art) to a client 1810. This client could
comprise a web browser 1850 which runs the transformation
framework 1860. However, the transformation 1860 frame-
work may not be directly integrated into the web browser. In
this case, the web browser would call the transformation
framework 1860. The transformation framework 1860 then
generates the HTML/CSS representation 1880 of the symbol
definition 1830 received from the web server 1820. Finally,
the web browser 1850 may utilize the generated HTML/CSS
representation in order to display the retrieved symbol defi-
nition. In this way, the amount of data to be transmitted can be
kept relatively low since the web browser 1850 creates the
HTML/CSS representation itself. It is not necessary to trans-
mit a set of HTML/CSS representations from which the web
browser then has to select a suitable HTML/CSS representa-
tion.

The following section provides some examples of symbols
which can be created with the transformation framework in
accordance with any ofthe embodiments of the present inven-
tion as described above.

The shape of FIG. 16 comprises three triangles 1900, 1910
and 1920. Triangles 1910 and 1920 share the same border
colors, while triangle 1900 has different border colors. How-
ever, the triangles are derived from a single CSS class, which
may be represented by the following code:

triangle {

width: 0;

height: 0;

border-bottom: 120px solid green;
border-left: 60px solid transparent;
border-right: 60px solid transparent;

Some of'the attributes of the triangles 1900, 1910 and 1920
are necessary for all triangles, while some attributes differ,
e.g., size or color. For the triangles depicted in FIG. 16, this
results in six CSS classes:

This is the most general CSS class comprising attributes
shared by all triangles 1900, 1910 and 1920:

#triangle {
width: 0;
height: 0;}

The following code represents the colors of triangle 1900:

17

#triangle-style02 {
border-bottom: solid red;
border-left: solid transparent;
border-right: solid transparent; }

The following code represents the size of triangle 1900:

#triangle-id3 {
border-bottom: 30px;
border-left: 10px;
border-right: 10px;}

The following code represents the size of triangle 1910:

#triangle-id1 {
border-bottom: 120px;
border-left: 60px;
border-right: 60px;}

The following code represents the size of triangle 1920:

#triangle-id2 {
border-bottom: 80px;
border-left: 40px;
border-right: 40px;}

The following code represents the colors used by both

triangles 1910 and 1920.

#triangle-style01 {

border-bottom: solid green;
border-left: solid transparent;
border-right: solid transparent; }

From the above code it becomes clear that the code may be
merged such that as many lines of code are shared between
different shapes. Inthe example of FIG. 16, all triangles 1900,
1910 and 1920 share one CSS class, while triangles 1910 and
1920 further share another CSS class (i.e., the class defining

US 9,104,756 B2

10

15

20

25

40

18

-continued

border: solid 2px dark-blue

In a third step, an instance specific class is created defining

the size of the shape:

#rounded__square__id01{
width: 100px;
height: 100px;

border-radius: 20px;

}

However, as explained above, not all web browsers support
all commands in the same way. Therefore, some commands
have to be defined in a web browser specific way. Depending
on the web browser, this could be represented by the follow-
ing code:

#rounded__square_id01_ff7{
-moz-border-radius:20px;

}

Finally, all created classes are assigned to the <div> ele-
ment corresponding to the shape.

A more complex, but illustrative example is shown in FIG.
18. The symbol comprises three different shapes, a rounded
square 2000, a circle 2010 and a triangle 2020. In this
example, all shapes are of different type, size and have dif-
ferent border colors, but use exactly the same color gradient.
After creation of all CSS classes (according to any embodi-
ment described herein), the generator evaluates all class styles
in order to determine common and reusable definitions. The
reusable definitions are then extracted and put in separate
classes.

The following code represents a portion of the style of the
rounded square 2000:

#rounded_ square_ style01{
... // some other definitions
background: linear-gradient(top, #1e5799 0%,#2989d8

the colors). 45 50%,#207cca 51% #7db%e8 100%);
FIG. 17 shows a rounded square 1950. In the following, the b
successive creation of a web browser specific CSS class in
accordance with an embodiment of the present invention is The circle 2010 may be represented by the following code:
explained.
Initially, a basic rounded square class is created, which 50
could be represented by the following code: #eircle_style01{
... // some other definitions
background: linear-gradient(top, #1e5799 0%,#2989d8
50% #207cca 51%.#7db9e8 100%);
#rounded__square { 1
margin:0; 55
border: solid 1px;
) border-radius: 10px; The triangle 2020 may be represented by the following
code:
In a second step, a style specific class is created. As
explained above, the class may be reused by other shapes as 60 #triangle_ style01{
needed. As an example, this class could be represented by the - // some other defiitions
followine code: background: linear-gradient(top, #1e5799 0%,#2989d8
g : 50% #207cca 51%.#7db9e8 100%);
65

#rounded__square__style01{
background-color:#344567;

As can be seen from the code, and as explained above, all
three shapes share the same color gradient. Thus, the respec-

US 9,104,756 B2

19

tive code may be extracted and put into a new CSS style file
comprising the common style feature:

#common__style01{
background: linear-gradient(top, #1e5799 0% #2989d8
50% #207cca 51% #7db9%e8 100%);

}

In this way, the amount of source code required to represent
this common portion of the style of the three different shapes
is reduced.

The symbol of FIG. 19 is a combination of three shapes:
one rectangle 2500 and two circles 2510, 2520. In this
example, the rectangle shape 2500 may have a blue gradient.
Circle shape 2520 also has a blue gradient and circle shape
2510 has a “cutout style” and is filled with grey color. The
following definition is necessary to define the symbol in the
symbol language according to an embodiment of the present
invention:

<symbol>

<rectangle

width="150px” height="150px”
embossed-style="true”

border-radius="(20px, 20px)”

fill=" gradient(start(middle, top), stop(middle,
bottom), rgba(45, 157, 205, 0), rgba(0, 182, 241,
U

>

<circle

width="90px” height=""90px” x="30px”, y="30px”
fill="rgb(136, 136, 136, 0)”

cutout-style="true”

>

<circle

width="60px” height="60px” x="15px”, y="15px”
embossed-style="true”

fill=" gradient(start(middle, top), stop(middle,
bottom), rgba(45, 157, 205, 0), rgba(0,

182, 241, 0))”

/>

<feircle>

</rectangle>

</symbol>

Following code will be generated by the transformation
framework according to an embodiment of the present inven-
tion:

<{DOCTYPE html>

<htm!>

<head>

<meta http-equiv="Content-Type” content="text/html;
charset=UTF-8">

<style>

.shapel {

-webkit-box-shadow: inset 0 0 2px rgba(0,0,0,.8),
inset 0 2px 0 rgba(255,255,255,.5), inset 0 -7px 0
rgba(0,0,0,.6),

inset 0 -9px 0 rgba(255,255,255,.3);
-moz-box-shadow: inset 0 0 2px rgha(0,0,0,.8), inset
0 2px 0 rgba(255,255,255,.5), inset 0 -7px 0
rgba(0,0,0,.6), inset

0 -9px 0 rgba(255,255,255,.3);

box-shadow: inset 0 0 2px rgba(0,0,0,.8), inset 0 2px
0 rgba(255,255,255,.5), inset 0 —7px 0
rgba(0,0,0,.6), inset 0 —

9px 0 rgba(255,255,255,.3);

-webkit-border-radius: 20px;

-moz-border-radius: 20px;

border-radius: 20px;

background: -webkit-gradient(linear, 0% 0%, 0% 100%,

10

15

20

25

30

35

40

50

55

60

65

20

-continued

from(#2D9DCD), to(#00B6F1));
background: -moz-linear-gradient(top, #2D9DCD 0%,
#00B6F1 100%);

.shape2 {

-webkit-box-shadow: inset 0 0 2px rgba(0,0,0,.8),
inset 0 2px 0 rgba(255,255,255,.5), inset 0 -7px 0
rgba(0,0,0,.6),

inset 0 -9px 0 rgha(255,255,255,.3);
-moz-box-shadow: inset 0 0 2px rgha(0,0,0,.8), inset
0 2px 0 rgba(255,255,255,.5), inset 0 -7px 0
rgba(0,0,0,.6), inset

0 -9px 0 rgba(255,255,255,.3);

box-shadow: inset 0 0 2px rgba(0,0,0,.8), inset 0 2px
0 rgba(255,255,255,.5), inset 0 —7px 0
rgba(0,0,0,.6), inset 0 —

9px 0 rgba(255,255,255,.3);

-webkit-border-radius: 30px;

-moz-border-radius: 30px;

border-radius: 30px;

background: #00B6F1;

.shape3 {

-webkit-box-shadow: 0 1px 0 rgba(255,255,255,.2),
inset 0 4px 5px rgba(0,0,0,.6), inset 0 1px 0
rgba(0,0,0,.6);

-moz-box-shadow: 0 1px 0 rgba(255,255,255,.2), inset
0 4px 5px rgba(0,0,0,.6), inset 0 1px 0

rgba(0,0,0,.6);

box-shadow: 0 1px 0 rgba(255,255,255,.2), inset 0 4px
5px rgba(0,0,0,.6), inset 0 1px 0 rgha(0,0,0,.6);
-webkit-border-radius: 30em;

-moz-border-radius: 30em;

border-radius: 30em;

background: #888;

</style>

</head>

<body>

<div>

<div class="shapel” style="position:relative;
display:inline-block; width: 150px; height: 150px;”>
<div class="shape3” style="position:relative; top:
30px; left: 30px; width: 90px; height: 90px;”>
<div class="shape2” style="position:relative; top:
17px; left: 16px;

width: 60px; height: 60px;™>

</div>

</div>

</div>

</div>

</body>

</html>

The difference in the complexity between the symbol lan-
guage and the resulting HTML/CSS representation becomes
immediately clear. This illustrates the advantageous solution
of the present invention.

The following is an example of a tablet computer symbol.
A graphic representation of this symbol is shown in FIG. 20.
The symbol comprises a rectangle shape 2600 with a “card
style”, wherein the color changes from grey to white. Further,
there is a rectangle shape 2610 in “cutout style” which is filled
with grey color and a rectangle shape 2620 with “glossy
style” and with no color filling. Finally, the symbol comprises
a small rectangle shape 2630 in “cutout style” with grey
filling. The following definition is necessary to define the
symbol:

<symbol>

<rectangle

width="150px” height=""200pxpx”
card-style="true”

border-radius="(20px, 20px)”

US 9,104,756 B2

21

-continued

fill=" gradient(start(middle, top), stop(middle,
bottom), rgba(187, 187, 187, 0), rgha(204, 204, 204,
V)

>

< rectangle

width="90px" height="140px” x="25px”, y="30px”
fill="rgb(136, 136, 136, 0)”

cutout-style="true”

>

< rectangle

width="84px” height=" 135px” x="5px”, y=""3px”
glossy ="rgba(255,255,255,0) simple”

/>

</ rectangle >

< rectangle

width="20px” height=" 10px” x="60px”, y="40px”
cutout-style="true”

border-radius="(20px, 20px)”

/>

</rectangle>

</symbol>

The generation of several symbols can be optimized by
reusing the generated CSS classes for different symbols. For
instance, in the case where two symbols contain similar
shapes, the generated CSS code can be generalized so thatnot
two different CSS definitions are necessary for the shapes.

Ithas been shown above that the present invention provides
for a user-friendly easy solution for creating HTML/CSS
representations of complex symbols.

Moreover, the present solution is also efficient in generat-
ing HTML/CSS code from underlying human readable code.
For instance, a HTML document containing 3000 symbols
such as FIG. 6 could be displayed almost without delay in a
common web browser running on standard hardware. This
makes it possible to use this technology to represent big and
complex models in the most common web browsers.

It will be appreciated that as used herein, the terms system,
subsystem, service, module, programmed logic circuitry, and
the like may be implemented as any suitable combination of
software, hardware, firmware, and/or the like. It also will be
appreciated that the storage locations herein may be any
suitable combination of disk drive devices, memory loca-
tions, solid state drives, CD-ROMSs, DVDs, tape backups,
storage area network (SAN) systems, and/or any other appro-
priate non-transitory tangible computer readable storage
medium. It also will be appreciated that the techniques
described herein may be accomplished by having at least one
processor execute instructions that may be tangibly stored on
a non-transitory computer readable storage medium. Similar
statements apply with respect to the clients, servers, and/or
other elements in the various networks discussed herein.

What is claimed is:

1. A method for creating a HTML/CSS representation of a

geometric symbol, the method comprising:

a. processing a symbol definition from a file;

b. creating a web browser specific shape CSS class for each
geometric shape comprised in the symbol definition;

c. generating the HTML/CSS representation comprising
the one or more created web browser specific shape CSS
classes;

d. wherein the creating further comprises determining
equal attributes for each of the shapes and merging the
equal attributes into a generic attribute CSS class; and

e. creating a web browser specific attribute CSS class from
the generic attribute CSS class.

10

15

20

30

40

50

22

2. The method according to claim 1, wherein (b) further
comprises creating at least one web browser specific attribute
CSS class for each of the geometric shapes.

3. The method according to claim 2, wherein, for a given
geometric shape that includes shape information and specific
attributes other than shape information, the corresponding
created shape CSS class stores the shape information and the
corresponding created web browser specific attribute CSS
class stores the specific attributes other than the shape infor-
mation.

4. The method according to claim 1, further comprising:
determining the level of CSS support of the web browser and
adjusting the creation of the web browser specific shape CSS
classes accordingly.

5. The method according to claim 1, wherein the web
browser specific shape CSS class is created from a generic
shape CSS class.

6. The method according to claim 1, wherein the generating
of'the HTML/CSS representation comprises the generation of
the HTML/CSS representations for a set of pre-defined web
browsers and storing the set of HTMIL/CSS representations
into a single file.

7. The method according to claim 1, wherein the symbol
definition corresponds to a XML-compatible format.

8. The method according to claim 1, wherein the HTML/
CSS representation comprises a HTML file which comprises
the web browser specific shape CSS classes.

9. The method according to claim 1, wherein the creation of
the HTML/CSS representation is carried out at a server which
retrieves the symbol definition from a client, and wherein the
server sends the created HTML/CSS representation to the
client.

10. A non-transitory computer readable medium tangibly
embodying machine executable instructions for causing at
least one computer to perform a method according claim 1
when executed.

11. The method according to claim 1, wherein the symbol
definition includes a given geometric shape more than once,
and wherein only one shape CSS class is created for the given
geometric shape as a result of (b).

12. A system for creating a HTML/CSS representation of a
geometric symbol, comprising:

a. a processing module configured to process a symbol

definition from a file;

b. a creation module configured to create a web browser
specific shape CSS class for each geometric shape com-
prised in the symbol definition;

c. a generation module configured to generate the HTML/
CSS representation comprising the one or more created
web browser specific shape CSS classes; and

d. at least one processor configured to execute the process-
ing module, the creation module and the generation
module;

wherein the creation module is further configured to deter-
mine equal attributes for each of the shapes and merge
the equal attributes into a generic attribute CSS class;
and

wherein a web browser specific attribute CSS class is cre-
ated from the generic attribute CSS class.

13. The system according to claim 12, wherein the creation
module is further configured to create at least one web
browser specific attribute CSS class for each of the geometric
shapes.

14. The system according to claim 12, further comprising a
symbol editor comprising a GUI usable for drawing a geo-

US 9,104,756 B2

23

metric symbol and further configured to store the geometric
symbol in the file so the HTML/CSS representation can be
generated.
15. A method for creating a HTML/CSS representation of
a geometric symbol, the method comprising:
processing a symbol definition from a file;
creating one web browser specific shape CSS class for each
different geometric shape comprised in the symbol defi-
nition;
generating the HTML/CSS representation comprising the
one or more created web browser specific shape CSS
classes;
wherein the creating further comprises determining equal
attributes for each of the shapes and merging the equal
attributes into a generic attribute CSS class; and
creating a web browser specific attribute CSS class from
the generic attribute CSS class.

#* #* #* #* #*

15

24

